The three tiers of science communication

Perhaps one of the most important yet widely ignored skills that us scientists need to cultivate is to communicate our science better. By “communicate science”, I am not simply referring to publishing research articles and reviews in journals and publications. This is about conveying ideas, research, theories, and facts to a wide audience. This is harder than it seems. On a day-to-day basis, we are so engrossed in our little scientific bubble that we hardly engage with people from outside our labs, departments, and universities. For example, I can prepare to present my work during our weekly group meetings with an accurate understanding of how to introduce my research project to my fellow lab members and what data to present during my talks. Most individuals in my program or department have an understanding of the common scientific language and the several jargons that are overused during the talks and seminars.

I would like to think that being in my research group has given me a better understanding of communicating my work to my fellow peers.  My lab is a “hybrid” wet and dry lab i.e., it is comprised of computer scientists, computational chemists, synthetic chemists, and biologists. Our group meetings are extremely interdisciplinary covering a multitude of topics ranging from machine learning and molecular dynamics to immunology and cancer biology. At this point in my career, I am certain and confident with my ability to convey the scope of my project and the several particular aspects of my current research.

The most challenging audience are individuals who are completely outside the realm of our scientific bubble. These individuals serve critical roles in our society but are overlooked by us all the time. I have interacted with my friends and family from different professions and they’re always intrigued by my work and more specifically about *what* we do in the lab and *how* we do science. These are important questions that not only establishes confidence in the scientific community but also bridges the gap between our worlds. Questions that may seem simple or even silly to us may be important in the large scheme of things. For example, the other day, my friend asked me “How do the lab mice get Alzheimer’s disease?” To answer this, I could have just said that there are several transgenic models of mice with genetic mutants that spontaneously develop Alzheimer’s over time. This is an answer that I would have had for someone in the scientific community. But for my friend who happens to be a business associate, I candidly described genetics of the disease, how mice are bred in laboratories, and how they develop plaques that can be viewed in their brain tissue sections. In order for the public to trust us, first and foremost, they need to be aware and educated on the basic scientific methods and principles. This includes communication about the bases of experimental design, process of gathering significant data, peer reviewing, reproducibility, etcetera.

This brings me to what I consider are “the three tiers of science communication” that scientists should cultivate. We need to learn how to communicate our science to:

  1. Our fellow peers in the field i.e., individuals from our specific area of research
  2. Our scientific colleagues from different areas of research
  3. The general public including individuals from other professions

Tier #1 is a no-brainer. Individuals from this tier read and review our work. They are critical of every aspect of our research and question the scientific methods used. They make signifiant contributions to our work and provide guidance for the growth of our research. Tier #2 is tricky. Why would I, a neurobiologist want to communicate my work to a computer scientist or a meteorologist even? A major aspect of creating new solutions to old problems is to collaborate with scientists from outside our specific focus areas. Drug discovery is not possible without computer scientists teaming up with chemists and biologists. Many of the problems in the areas of neuroscience such as understanding of neural circuits and systems, cognitive and behavioral neuroscience, etcetera would not be solvable without the help of electrical and mechanical engineers.

Individuals from tier #3 are probably one of the most significant yet overlooked in this regard. Science communication to the general public does not happen until there is a problem affecting people from the both worlds. Involving this tier should not be limited to the difficult times but should be an ongoing process. It should be a part and parcel of our work. Much has already been said about this. How do we make science outreach a regular part of our work? Should the burden of outreach not be imposed on scientists at all? We need more science communicators breaking out of our bubble and out into the real world. Furthermore, many grad students and researchers make contributions in their own way. For example, using social media (#scicomm on twitter and instagram) for science outreach is a great way to reach thousands of individuals from your fingertips while working in your lab. No fancy equipment, no travel money, no event organization necessary! Well established senior scientists with the means and resources should strive to connect with and impact a larger audience.

 

Advertisements

Science vs. the scientist

A common thought in the entertainment industry is whether an artist and their art can be held in mutually exclusive standards. Do you like a song because you like the musician or do you like a musician because you like their song? Can the two be separated from one another? People boycott Woody Allen films because they do not want to support his career or his power in the entertainment industry. By watching his movies, do we validate his actions by contributing to his growth as an artist? Same goes with Harvey Weinstein and many others.

Similar parallels can be drawn with scientists and their science. For example, James Watson may have contributed to one of the most significant discoveries in science -the discovery of the double helix structure of DNA- or may have led a great scientific undertaking with the Human Genome Project, but relinquished his reputation when his racist and sexist remarks were made apparent. Lawrence Krauss (theoretical physicist, cosmologist, famous atheist, and a “liberal crusader“) was recently accused of sexual harassment which was followed by more allegations and expose by female academics on social media. I have thoroughly enjoyed Krauss’ popular science opinions as well as supported his science and public policy advocacy in the past. The recent allegations and accusations have left me transfixed about whether his work deserves my support at this point. Will I (indirectly) validate Krauss’ ghastly actions by supporting his scientific literacy and the skeptic movement? The deep dark spaces on the Internet harbors more stories about prominent scientists. Do scientific contributions become less significant due to the scientists’ reprehensible actions and behavior? One may argue that science is larger than one individual where do we draw the line?

The fact of the matter is that scientific principles, discoveries, and inventions do not stem from one individual. The credibility of scientist is validated by several other scientists in charge of legitimizing the science with a proof of approval. Does continuing to fund and support such researchers mean validation of bad behavior? The forthcoming ripple effect and propagation of a toxic environment will eventually affect others in the community. Science is scrutinized and validated by peer review over and over again. Is it time to scrutinize and peer review scientists as well?

More: Harassment case opens dialogue and When will science get its #metoo moment?

Religion, science, and believing.

I don’t usually talk about my personal views on this blog. However, this topic is something that I have contemplated for a while now and think is fair to be open about. I am still learning and evaluating my outlook on approaching this subject. Below are some bits revolving around the themes of religion and personal belief systems that were hidden away in my drafts folder for a long time. I have decided to publish all of them together. I’m sure I’ll have more to say about this topic in the future, but here’s a start.

***

Recently, I had a conversation with a fellow grad student about religion and his personal beliefs. Most academics shy away from this discussion in a professional (and sometimes even in a personal) setting. It is considered uncommon or rude to talk about it and people keep it to themselves. It is often acknowledged that as scientists, “we do science for science’s sake”, or that “a person’s religious beliefs has no place in his/her scientific pursuits.” This is something that has always boggled my mind. As a biologist and an atheist, I have confidence in my work/study because the underlying laws of biological systems are established and follow a set of proven scientific principles. For example, when we design an antibacterial drug against a particular strain of resistent bacteria, we know for a fact that the bacteria has mutated (or evolved) and therefore the old drug doesn’t work anymore. Similarly, we use mouse, worm, and other animal models for testing compounds in vivo because we have evidence to prove that humans are genetically related to other animals through a common evolutionary ancestor. Therefore, we can study the effects of the drugs in other animals before testing them to humans. The empirical evidence that exists as the basis of our research is inherently acknowledged to be the underlying force that drives scientific research. Now, how can someone who does similar work in a laboratory setting have a completely contradictory viewpoint in his/her private life? How can someone believe in a book (or many books) that preaches blatant falsehoods about our understanding of the universe and at the same time come to work every day and do science with a conscious mind? For me, science is deeply woven into our personal lives. No, I cannot pretend that science does not affect my personal views about the world. Similarly, my conscious will never let me pretend like my personal views have no affect on my scientific work.

***

One of the most common arguments that I have come across during such discussion is that people often say “I don’t believe in *everything* that this book says. I only believe in a few things that are important for my moral framework.” This is complete BS and hypocritical. One cannot disregard a particular theory written in a book (for example, “the earth is 6000 years old”, or, “when humans die we come back as another life form on earth”), and at the same time believe in another theory written in the same book. One can’t pick and choose what you want to accept and reject from a book, and then claim the book to guide one’s moral framework.

And then there is an argument that science is not perfect and that not everything published in all of the scientific literature is true. This is absolutely correct. This is why science is constantly changing – because our understanding of the world is constantly changing. This is why scientific literature constantly undergoes modifications and updates to accommodate our latest understanding of the world and the universe.

This is not the same with religious texts. These texts were written hundreds and thousands of years ago and are obsolete in this day and age. These texts were written to accommodate the worldview of an ancient time period. They are not relevant to the 21st century and we certainly do not have to submit to these texts in order to live within a moral framework of society. As of 2017, we have discovered around 8.7 million species on earth and can estimate a hundred billion galaxies in the observable universe. We have achieved things that were once considered unfathomable by humankind. Why do we have to be stuck in the ancient past and live by some 12th century law in order to be considered as “good humans”? Of course, religious texts provide interesting insight into various philosophical questions that one can ponder over. However, they do very little to the understanding and practice of science in this day and age.

It is also often argued that we need religion to understand morality and differentiate between good and evil. Religion does not equal morality. One does not have to be a good human just to please an invisible supreme being or to go to heaven. Altruism and kindness can exist on their own.

***

Talking about scientists with personal religious beliefs, I remember a wonderful conversation between Richard Dawkins and Lawrence Krauss many years ago. I can’t help but bring up a part of their conversation while thinking about this topic –

Krauss: I’ve had people write to me and say “I’m a medical doctor and I don’t believe in evolution.”

Dawkins: That’s a disgrace. I’m not supposed to say that, especially in this country (referring to the US) because one’s private beliefs are supposed to be irrelevant. But I would walk out of a doctor’s office and not consult him anymore if I heard that he said that. Because what that doctor is saying is that he’s a scientific ignoramus and a fool.

Krauss: In fact, in that regard, it is interesting to me at the same time how people can hold beliefs which are incompatible with other beliefs they have. And in some sense, everyone is a scientist and they just don’t realize they are, and yet in the time of crisis, that’s when.. (breaks). The example I gave is when George Bush was president, he said intelligent design must be taught alongside evolution so the kids will know what the debate is all about. And it wasn’t a stupid statement at priori, it was ignorant because he didn’t realize that there’s no debate. And that’s fine. I don’t mean ignorant in a pejorative sense, I just mean he wasn’t aware.

Dawkins: Ignorance is no crime.. you just don’t want to consult a doctor who’s ignorant.

Krauss: What amazed me is that in the same administration, when the avian flu was going to be a problem and mutating to humans, president Bush said “We’ve got to find how long it takes before the avian flu will mutate into humans.” And what amazed me is that no one in the administration – not a single person said “It’s been designed to kill us, forget about it.”

Dawkins: That’s a very good point. This kind of split-brain business which you’ve been referring to, the most glaring example I know, is more in your field (referring to Theoretical Physics and Astrophysics) than mine. I was told by a professor of Astronomy at Oxford, about a colleague of his who’s an astronomer and an astrophysicist, who writes learned papers – mathematical papers, published in astronomical journals, assuming that the universe is 13.7 billion years old. But he privately believes that the universe is only 6000 years old. How can a man like that hold down a job in a university as an astrophysicist? And yet, we are told “Well, it’s his private beliefs, you mustn’t interfere with this man’s private beliefs as long as he writes competent papers in astronomical journals”.

Krauss: Well, I mean, as long as he doesn’t teach his private beliefs.

Dawkins: Well, let’s hypothetically suppose that he teaches absolutely correctly – that the universe is 13.7 billion years old. How could you want to take a class from a man who teaches one thing and believes in something that is so many orders of magnitude different?

***

About “believing” in science.

My advisor once pointed out not to use the word ‘believe’ when someone said “I believe that..” during a lab meeting presentation. Back then, I didn’t understand what was wrong in saying we “believed” in something. I now understand. As scientists, we evaluate something on the basis of observation, experiment, and evidence. The evidence is dependent on the observations made and experiments performed. Therefore, something is either likely or unlikely to occur. It is either more probable or less probable. We don’t have to believe in evolution or the big bang theory. We accept the evidence that supports them. Believing in evolution or not doesn’t make it true. The evidence for evolution suggests that it is true. Belief is not a part of rational enquiry. Belief relies on faith and not on evidence.